The Milky Way Halo Direct Evidence for Accretion

Sagittarius dwarf galaxy

- currently merging with Milky Way
- diameter >20 degrees, with larger tidal streamer
- $-L = 1 2 \times 10^7 L_o$
- M ~ 108 M.
- includes 5 globular clusters

Sag A : Disruption of a Satellite in the Milky Way Halo

Stellar streams – remnants of a galaxy torn apart

New very faint dSphs are being discovered ... how many are we still missing ? Not enough to solve the missing satellite problem! How faint/low mass can they go ? Empty DM halos ?

How many satellites has the Milky Way swallowed already ? New streams are being discovered ...

How many satellites has the Milky Way swallowed already? New streams are being discovered ... Outlook :

The <u>RA</u>dial <u>Velocity</u> Experiment

- □ 6dF spectrograph at the 1.2m UK Schmidt, AAO.
- □ R=7500 Ca triplet (841-879 nm) spectra.
- □ Southern hemisphere stars, 9 < I < 12 mag.
- □ Radial velocity measurement accuracy < 2 km/s.
- $\Box [Fe/H], \alpha, \log g, T_{eff}...$
- □ Began 2003, to run until > 2010.
- □ > 150,000 spectra to date.
- Data releases and more information:

www.rave-survey.aip.de

How many satellites has the Milky Way swallowed already? New streams are being discovered ... Outlook :

Science Goals

- Chemical and kinematic signatures of stellar streams in the halo, outer bulge and thick disk due to satellite accretion.
- Dynamical influence of the local spiral arms and inner bar.
- Ellipticity, warping and lopsidedness of the disk.
- First non-local measurement of surface density in the disk.
- Galactic escape speed
- Detailed structure of the spiral arms and

The Local Group

> 43 galaxies (2007)

35 dwarfs: 17 dSphs, 5 dEs, 13 dIs

50% Local Group gals have M_{tot} <3 10⁷ M_{\odot} (dls, dSphs)

				D	
				(Mpc)	
NAME	Alias	Type	M_{ν}	Galaxy	Lecal Group
WIM	DDO 221	Ir IV-V	-14.4	0.95	0.81
IC 10	UGC 192	L IV:	-16.3	0.66	0.27
Cetus		dSph	-10.1	0.78	0.62
NGC 147	UGC 326	Sph	-15.1	0.66	0.22
And III	A0032 + 36	dŠph	-10.2	0.76	0.31
NGC 185	UGC 396	Sph	-15.6	0.66	0.22
NGC 205	M110	Sph	-15.4	0.76	0.31
M32	NGC 221	E2	-15.5	0.76	0.31
M31	NGC 224	SP I-II	-21.2	0.76	0.30
And I	A0043 + 37	dSph	-11.8	0.81	0.36
SMC		Lr IV/IV-V	-17.1	0.06	0.48
Sculptor		dSph	- 9.8	0.09	0.44
Fiants	LGS 3	dLr/dSph	-10.4	0.31	0.42
IC 1613		цv	-15.3	0.72	0.47
And V		dSph	- 9.1	0.81	0.37
And II		dSph	-11.8	86.0	0.26
M33	NGC 598	Sc II-III	-13.9	0.79	0.37
Fhoenix		dLr/dSph	- 9.8	0.40	0.59
Formax		dSph	-13.1	0.14	0.45
LMC		Ir III-IV	-13.5	0.05	0.48
Carina		dSph	- 9.4	0.10	0.51
Leo A	DDO 69	Lr V	-11.5	0.69	0.88
Leo I	Regulus	dSph	-11.9	0.25	0.61
Sextans		dSph	- 9.5	0.09	0.51
Leo II	DDO 93	dSph	-10.1	0.21	0.57
Urat Minor	DDO 199	dSph	- 8.9	0.06	0.43
Drago	DDO 203	dSph	- 8.6	0.08	0.43
Milky Way	Galaxy	S(B)ba I-II	-20.9:	0.01	0.46
Sagittarius		dSph(t)	-13.8::	0.03	0.46
SagDIG		Ŀν	-120	1.18	1.29
NGC 6822		Ir IV-V	-15.0	0.50	0.67
Aquarina	DDO 210	v	-10.9	0.95	0.95
Тисапае		dSph	- 9.6	0.87	1.10
Casaiopeia	And VII	dSph	-120	0.69	0.29
Гедалага	DDO 215	ΓV	-123	0.76	0.44
Редалана П	And VI	dSph	-11.3	0.78	0.38

DATA ON LOCAL GROUP GALARDE

The Local Group

The Local Group (E. Grebel 2007, Saas-Fee Course)

Dwarf Ellipticals

Dwarf Ellipticals

☆ spherical - elliptical, exponential light profiles ☆ high central stellar densities ☆ dEs and dE,Ns with nuclei containing up to 20% light $rac{1}{2}$ M_V \geq -17 mag, $\mu_V \leq$ 21 mag arcsec⁻² $rightarrow M(HI) \le 10^8 M_{\odot}$, some still have ongoing low-level SF $rac{10^9}{M_{\odot}}$ M_{tot} ~ 10⁹ M_{\odot} ☆ long-lasting SF in the past ☆ considerable chem. enrichment ☆ in high galaxy density regions, mostly satellites

Dwarf Spheroidals

Dwarf spheroidal galaxies in the Local Group

Dwarf Spheroidals

Dwarf Spheroidals dSphs

☆ diffuse, LSB dwarfs

☆ little central concentration

☆ younger stellar populations (more centrally concentr.) ☆ $M_V \ge -14$ mag, $\mu_V \ge 22$ mag arcsec⁻² (least lum. gals known) ☆ M(HI) ≤ 10⁵ M_☉, no ongoing SF

☆ M_{tot} ~ 10⁷ M_{\odot} (least massive gals known)

A exponential light profiles, R_{1/2} > 100 R_{1/2} (GCs@same lum.)

Iong-lasting SF @ early times, all have old stellar pops some stopped SF 10 - 12 Gyr ago, some formed majority of their stars 6 - 8 Gyr ago few had SF 1 - 2 Gyr ago

SF influenced by big companion

☆ low metallicities but large spread in abundances
 ☆ in high galaxy density regions, mostly satellites
 ☆ high DM fractions or radially varying veloc. dispersion

- nio - tro - vo

Dwarf Spheroidals

Dwarf Spheroidals

dSphs : Stellar Metallicities

Low but not extremely low stellar abundances.

Dwarf Irregular Galaxies

Irregular dwarf galaxies in the Local Group IC 10 NGC 6822 (500 kpc) (660 kpc) Mürren - Saas-Fee-Course - E.K. Grebel 15 05.03.2007

Dwarf Irregulars dIrrs, dIs

☆ blue, gas-rich, irregular, dominated by scattered HII regions ☆ young stellar populations, active SF $rac{1}{2}$ M_V \geq -14 mag, $\mu_V \leq$ 23 mag arcsec⁻² \therefore M(HI) $\leq 10^9$ M_{\odot}, clumpy, often more extended than stellar comp. ☆ M_{tot} ~ 10¹⁰ M_☉ ☆ stochastic SF, no spiral arms/density waves ☆ low metallicities but large spread in abundances ratios ☆ in low galaxy density regions ☆ do all dlrrs have old stellar populations ?

if dI stops SF, it will resemble a dSph after few

100 Myr

CMD Analyses of Local Group Galaxies

HST WFPC2 imaging observational limit depends on distance D detect Giant Branch & (upper) Main Sequence stochastic effects (small star number statistics) SF history entangled with chemical enrichment history

CMD Analyses of Local Group Galaxies

SF history entangled with chemical enrichment history : age - metallicity (- dust) degeneracy for optical colours disentangled with optical + NIR colours !

RGB region of CMD 4 different ages 3 different [Fe/H] in each panel isochrones at similar positions

CMD Analysis of dSph Sextans A, D=1.32 Mpc

Dolphin et al. 03:

HST WFPC2 imaging 50% complete to V=27.5, I=27.0

A high SFR 2.5 Gyr ago
 A recent increase in SFR since ~0.1 Gyr ago
 A stars older than 2.5 Gyr
 A [Fe/H] = - 1.4

CMD Analysis of dSphs Dwarf Spheroidal Galaxies

- SF history from HST CMDs
- young population is absent (by definition)
- old population ubiquitous
 - at least one purely old galaxy (Ursa Minor)
- intermediate-age population varies
 from 0% --> >90%

Mighell, Burke 1999, AJ, 118, 366

CMD Analysis of dSph

Carina

- 10-13 Gyr old population: 10-20%
- ~7 Gyr old population: 80-90%

Smecker-Hane et al. 1994, AJ, 108, 507

CMD Analysis of dSph

The SFHs of Dwarf Galaxies

Age structure in a synthetic colormagnitude diagram

Shown: Constant star formation rate from 15 Gyr to the present, no photom. errors.

Sallart et al. 1999

CMD Analyses of dls

Tolstoy et al. 98: HST WFPC2 imaging of LeoA, D=?

 10^{4} Time back from present (Mvr)

The SFHs of Dwarf Galaxies

The SFHs of Dwarf Galaxies from Grebel 2007

(Note: even within the same type, each dwarf has its own, unique star formation history; no two dwarfs are alike.) Grebel 1997

Dwarf Irregular Galaxies dls

Dwarf Irregular Galaxies : LMC

Field stars

- LMC contains outer halo of old field stars and globular clusters
- evidence for large star formation events 3-10
 Gyr ago
- peak in star formation occurred in last 3 Gyr
- Clusters and asssociations
 - age distribution is bimodal, with gap between 3-10 Gyr (field stars show different behavior)
 - LMC contains population of massive young "blue globular clusters", and supergiant HII regions

Dwarf Irregular Galaxies : LMC

Star clusters in the LMC show age gap: 10 - 3 Gyr ago

- -- not seen in field stars
- -- chemical enrichment continued
- → Formation of long-lived star clusters only during

-- related to close passages of SMC and Milky Way ! ?

The Local Group

Dwarf Galaxies in the Local Group

dSphs more massive before ? got shred down by tidal forces & past close passages to the MW ?

The Fate of the Local Group (Forbes+00)

The elliptical galaxy formerly known as the Local Group MW and M31 will probably merge in ~ 4 Gyr by that time they will have swallowed all their smaller comp. → normal field elliptical When young stellar pops will have faded: $M_v \leq -21$. The Globular Clusters will survive. [Gas-rich mergers may produce new GCs] **Collect all 700 Local Group GCs with their luminosities** (+fading) and metallicities [Fe/H] → ~ universal GC Luminosity Function \rightarrow ~ normal bimodal GC [Fe/H] distribution with peaks at [Fe/H] = -1.55 & -0.64MP / MR = 2.5 / 1**MP** metal-poor, **MR** metal-rich \rightarrow ~ normal GC specific frequency $S_N = N_{GC} \cdot 10^{0.4(MV+15)} \sim 3$

The Fate of the Local Group (Forbes+00)

Fig.1. Absolute magnitude distribution for the Local Group 'Elliptical'. The distribution resembles the 'universal' globular cluster luminosity function.

Fig. 2. Metallicities of Local Group globular clusters. The number of available globular clusters with individual measurements is indicated in each panel.

Fig. 3. Metallicity distribution for the Local Group 'elliptical'. The distribution reveals two peaks at [Fe/H] = -1.55 and -0.64.