

Some speculation

- If the turnover in the LF would reflect a turnover in the MF, this would
 - tie in nicely with Parmentier & Gilmore's 05, 07 empirical results :

MW GC system initially had a mass spectrum with turnover around $10^5~M_{\odot}$

 indicate that the MF of the molecular clouds in the massive gas-rich Antennae merger (LIRG) is different from situation in undisturbed spirals, dwarf galaxy starbursts

(as expected due to pressure effects)

→ prediction to be tested with ALMA
YSCs = best proxies for MC cores & high SFE regions
U. Fritze, Göttingen 2008

Cosmological Importance of Galaxy Interactions & Starbursts

Hierarchical structure formation scenario :

Galaxies build up continuously from smaller building blocks ± starbursts !

Galaxy interactions much more frequent in the past & much stronger, galaxies more gas-rich

Key role of (Globular) Star Clusters = eternal tracers of violent star formation episodes

SC analysis 1-by-1 : age & metallicity distributions, much better than integrated light ! (FvA 98, 99, 04)

Multi-band Photometrie : HST (+ ground) UBVRI+NIR

The Local Group & Beyond35 members around Milky Way & M31 within 1 MpcNearby groups:Sculptor group : 6 members D~1.8 MpcM81 group : 8 members D~3.1 MpcCentaurus group : 17 members D~3.5 MpcM101 group : 5 members D~7.7 MpcM66+M96 group : 10 members D~9.4 MpcNGC 1023 group : 6 members D~9.6 MpcCensus very incomplete : low – luminosity dwarfslike Sag dSph cannot be detected beyond our Local
Groupgalaxy group <50 members,
galaxy cluster >50 membersU. Fritze, Goettingen 2008

Abell Catalog of Galaxy Clusters

POSS northern sky w/o Milky Way disk (extinction) 1958

Cluster := >50 members within m_3 and m_3 +2 mag, m_3 := mag of 3rd brightest member, within angular radius q_A =1.7'/z, z=redshift estimate (from 10th brightest galaxy assumed to be universal)

1682 galaxy clusters within 0.02 < z < 0.2 (z>0.02 --> cluster fits on ~6° ´ 6° POSS plate, z<0.2 --> sensitivity limit of POSS plates)

extended to include 4076 clusters by Abell, Corwin, Olowin 1989

both catalogs not free from projection effects !!!

Galaxy Clusters

Anisotropy in the velocity dispersion or non-spherical mass distribution could affect the mass estimate

 \rightarrow alternative mass estimates : X-rays !

Galaxy Clusters

2-body relaxation between galaxies unimportant : $t_{rx} = t_{cross} \cdot N_{gal} / ln N_{gal} \gg t_{Hubble}$

σ independent of galaxy type and luminosity or mass → motion of galaxies in cluster not thermalized.

violent relaxation still going on on crossing timescale, i.e. clusters are still in formation.

~ 5 - 10 % of the luminous galaxies live in clusters today.

Galaxy Clusters

Scaling relations for galaxy clusters :

 $T_{x} \sim M / R_{vir}$

within R_{vir} : $<\rho> \sim 200 \rho_{cr}$, typically R_{vir} = 1 - 3 Mpc with ρ_{cr} critical density of the universe

 \rightarrow virial mass M_{vir} = 4 π /3 · 200 ρ_{cr} R_{vir}³

 \rightarrow T_x ~ M_{vir} / R_{vir} ~ R_{vir}²~ M_{vir}^{2/3}

Observations show very tight correlation between T_x and M_{vir} , better than between σ^3 and M_{vir}

(outlyers: unrelaxed clusters)

Typical $M_{vir} \sim 10^{14-15} M_{\odot}$,

~5% galaxies, ~10% ICM, ~85% DM

Butcher – Oemler Effect

Redshift evolution of the blue galaxy fraction $f_b = N_{blue} / N_{tot}$ due to - decreasing galaxy infall rate (Kauffmann 1996,

- decreasing galaxy Infall rate (Kauffmann 1996, Diafero et al. 2001) - decreasing HI content & SFR (field gals) (Madau et al. 1996) - increasing ICM content (Evrard et al. 1999)

Continuous addition of "young" S0s with low M/L -> Progenitor Bias slows down the redshift evolution of the <M/L> -> reduces redshift evolution of FP

Redshift Evolution of the CMR

Massive Es form before the clusters : ev. in groups S0s form after cluster virialisation : by transformation

Low luminosity systems : harassment and/or fading

U. Fritze, Goettingen 2008

SFR – Galaxy Density Relation

Global <--> local effects ICM, cluster potential <--> interactions within groups (Lewis et al. 2002, Gomez et al. 2003, Gerken et al. 2004) 11006 galaxies (M_b<-19, z<0.1) from 2dF GRS in 17 clusters 8598 galaxies (M_r<-20.5, z<0.1) from SDSS in field, groups, clusters

galaxies out to ~3 R_{vir} in low L_x clusters at z~0.2

 $\mu^* := SFR(H\alpha) / L^* 7$ with $R_{cc} 7$ reaches field galaxy SF level at ~3 R_{vir}

ICM ram pressure not efficient at ~3 R_{vir}

 μ^* with Σ reaches field galaxy SF level at $\Sigma_{crit} \sim \Sigma$ (3 R_{vir})

same for galaxies in rich & poor clusters, groups & field ? what quenches SF in low density environment – group activity?

group activity? U. Fritze, Goettingen 2008

