

	Chemically Consistent Evolutionary Synthesis GALEV
	simultaneous modeling of the
•	\star chemical evolution of the gas/ISM and the
. • • •	★ spectral evolution of the stellar component (incl. gaseous emission : HII regions)
	→ chemically consistent approach
	: = account for increasing initial abundances
-	of successive stellar generations
	by using input physics of appropriate metallicity
JO	for each stellar generation U. Fritze, HD Grad. Days 2008

	Implicatio	ons for Lo	ocal & Di	istant Galaxies				
	SFRs from ${\rm H_{a}},$ O[II], UV severely overestimated for low metallicity galaxies							
₹. V	Z=0.0004		z_{\circ}	Z=0.05				
. 🕹	H	18, SBS 0335 2	1	0.85				
	ດ້ຳແກ	3	1	0.87				
	UV(1500)	1.3	1	0.89				
/].	UV(2800)	1.4	1	0.89				
	when using standard calibrations valid for Z ~ Z $_{\odot}$ (Kennicutt 98, Gallagher et al. 89)							
	(Bicker & Fritze 2005)							
Ð	U. Fritze, HD Grad. Days 2008							

•••.	cB58 : a gravitati	ionally	lensed	galaxy () z=2.72			
	NIR spectrum: restframe optical spectrum							
	TABLE 1 Emission Lines							
	Line	$\lambda_{obs} \ (\mu m)$	Z _{em}	W _{rest} (Å)	F^{a}			
	[Ο 11] λλ3726, 3728 Ηγ λ4340 Ηβ λ4861	1.3898 1.61828 1.81217	2.72897 2.72875 2.72774	37 ± 3 9 \pm 1 26 \pm 4	12.74 ± 1.22 1.61 ± 0.17 4.07 ± 0.57			
	[O m] λ4959 ^b [O m] λ5007	1.84913 1.86678	2.72890 2.72845	26 ± 8 97 ± 5	4.01 ± 0.37 4.01 ± 1.30 14.73 ± 0.78			
	[O 1] λ 6300 [N II] λ 6548	2.19100 2.34949 2.44204	2.72935 2.72944	3 ± 1 25 ± 4 7 ± 2	0.35 ± 0.09 3.06 ± 0.46 0.86 ± 0.21			
	Hα λ6563 [N II] λ6583	2.44750 2.45566	2.72935 2.73031	106 ± 3 10 ± 2	12.56 ± 0.37 1.14 ± 0.26			
J	^b The blue wing of the 4 trough.	nts or 10 ' 1959 Å line	ergss fo	em ⁻ . eep atmosph U. Fritze, I	neric absorption HD Grad. Days 200			

WMAP - Concordance Cosmology

WMAP high accuracy measurements of many cosmological parameters: Age of the universe : 13.7 ± 0.2 Gyr Hubble constant :

70 (km/s)/Mpc +2.4/-3.2

Composition of the universe : 4% ordinary baryonic matter 22% dark matter 74% dark energy

Total density (matter + energy) consistent with flat geometry.

U. Fritze, HD Grad. Days 2008

U. Fritze, HD Grad. Days 2008

Galaxy Formation Epoch

Highest redshift QSO at present : z = 6.28 (SDSS) Highest redshift galaxy : z ~ 6.96 (lye+06) The Universe (IGM) must be mostly ionized at z < 6: Reionization by the first stars or AGNs around z~6.

A small fraction of the hydrogen in the Universe burning to helium is enough to generate energy for reionization (4 H \rightarrow ⁴He + 7 MeV per nucleon;

ionization energy per H is 13.6 eV)

Reionization of the IGM is directly visible in QSO spectra : Gunn Peterson trough due to HI seen in spectrum of QSO@ z=6.28 (Becker 01), not seen in spectra of QSOs @ z<6.

Most of the baryons at redshifts z > 2 are in highly ionized intergalactic medium with $T \sim 2 \times 10^4$ K.

U. Fritze, HD Grad. Days 2008

